Because of its unique pigment and fine-milled texture, titanium dioxide has become popular over the past century in a wide variety of different products. These include adhesives, paints, plastics, rubbers, textiles, inks, ceramics, and even some pharmaceuticals, foods, and hygiene products.
In a 2022 study published in the Journal of Hazardous Materials, scientists wanted to examine the effects of titanium dioxide as a food additive on atherosclerosis in mice. (Atherosclerosis refers to a hardening of the arteries.) Researchers fed mice 40 mg/kg of the food additive every day for 4 months, and found that it not only altered gut microbiota but also led to a significantly increased atherosclerotic lesion area, especially in animals that consumed a high-choline western diet (HCD).
In an early study Jani et al. administred rutile TiO2 (500 nm) as a 0.1 ml of 2.5 % w/v suspension (12.5 mg/kg BW) to female Sprague Dawley rats, by oral gavage daily for 10 days and detected presence of particles in all the major gut associated lymphoid tissue as well as in distant organs such as the liver, spleen, lung and peritoneal tissue, but not in heart and kidney. The distribution and toxicity of nano- (25 nm, 80 nm) and submicron-sized (155 nm) TiO2 particles were evaluated in mice administered a large, single, oral dosing (5 g/kg BW) by gavage. In the animals that were sacrificed two weeks later, ICP-MS analysis showed that the particles were retained mainly in liver, spleen, kidney, and lung tissues, indicating that they can be transported to other tissues and organs after uptake by the gastrointestinal tract. Interestingly, although an extremely high dose was administrated, no acute toxicity was observed. In groups exposed to 80 nm and 155 nm particles, histopathological changes were observed in the liver, kidney and in the brain. The biochemical serum parameters also indicated liver, kidney and cardiovascular damage and were higher in mice treated with nano-sized (25 or 80 nm) TiO2 compared to submicron-sized (155 nm) TiO2. However, the main weaknesses of this study are the use of extremely high single dose and insufficient characterisation of the particles.
Specification:
History
Food preservation and packaging
R-5566:
Un pigment apparenté, mais où le sulfate de baryum est remplacé par du sulfate de calcium, prend le nom de « sulphopone »
Nanotoxicology “focuses on determining the adverse effects of nanomaterials on human health and the environment.”

What are the forms of titanium dioxide?
Titanium Dioxide/TiO2/Titanium Oxide Free Sample
Physical and Chemical Properties
Some people have concerns about the safety of titanium dioxide because of reports linking it to cancer.
R-895 pigment has good dispersing properties and can be easily and quickly dispersed into the binder solvent.
Titanium dioxide is an inert earth mineral used as a thickening, opacifying, and sunscreen ingredient in cosmetics. It protects skin from UVA and UVB radiation and is considered non-risky in terms of of skin sensitivity. Because it is gentle, titanium dioxide is a great sunscreen active for sensitive, redness-prone skin. It’s great for use around the eyes, as it is highly unlikely to cause stinging.